Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

journal homepage: www.elsevier.com/locate/bbamem

The predominant role of IP₃ type 1 receptors in activation of store-operated Ca²⁺ entry in liver cells

L. Jones a, L. Ma J. Castro b, T. Litjens a, G.J. Barritt b, G.Y. Rychkov a,*

- ^a School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
- b Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia 5001, Australia

ARTICLE INFO

Article history: Received 18 October 2010 Received in revised form 10 December 2010 Accepted 13 December 2010 Available online 20 December 2010

Keywords: CRAC channels IP₃ receptor Ca²⁺ stores

ABSTRACT

Physiologically, hormone induced release of Ca²⁺ from intracellular stores occurs in response to inositol 1,4,5trisphosphate (IP₃) binding to its receptors expressed on the membranes of intracellular organelles, mainly endoplasmic reticulum. These IP₃ receptors act as channels, releasing Ca²⁺ into the cytoplasmic space where it is responsible for regulating a host of distinct cellular processes. The depletion of intracellular Ca²⁺ stores leads to activation of store-operated Ca^{2+} channels on the plasma membrane which replenishes lost Ca^{2+} and sustain Ca^{2+} signalling. There are three isoforms of IP₃ receptor, each exhibiting distinctive properties, however, little is known about the role of each isoform in the activation of store-operated Ca²⁺ entry. Recent evidence suggest that at least in some cell types the endoplasmic reticulum is not a homogeneous Ca²⁺ store, and there might be a sub-compartment specifically linked to the activation of store-operated Ca²⁺ channels, and Ca²⁺ release activated Ca²⁺ (CRAC) channel in particular. Furthermore, this sub-compartment might express only certain types of IP₃ receptor but not the others. Here we show that H4IIE liver cells express all three types of IP₃ receptor, but only type 1 and to a lesser extent type 3. but not type 2, participate in the activation of CRAC current (I_{CRAC}), while type 1 and type 2, but not type 3, participate in observed Ca²⁺ release in response to receptor stimulation. Presented results suggest that in H4IIE rat liver cells the sub-compartment of intracellular Ca^{2+} store linked to the activation of I_{CRAC} predominantly expresses type 1 IP_3 receptors.

calcium signalling [6].

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Exquisite regulation of cytoplasmic free Ca²⁺ concentration is essential for cell survival and function, with alterations controlling a variety of cell functions ranging from contraction and secretion to apoptosis [1]. Cytoplasmic Ca²⁺ concentration is altered via Ca²⁺ movement from two main sources – the extracellular space, where Ca²⁺ enters the cell via channels in the cell membrane, and intracellular Ca²⁺ stores, such as the endoplasmic reticulum (ER), Golgi, and mitochondria, which release Ca²⁺ into cytoplasmic space. In liver cells, as well as other cell types, inositol 1,4,5-trisphosphate receptors (IP3Rs) expressed on the membranes of intracellular organelles, particularly ER, provide the main pathway for Ca²⁺ release in response to the activation of G-protein coupled receptors located on the plasma membrane [2,3]. When intracellular Ca²⁺ stores become depleted, store-operated Ca²⁺ channels on the plasma membrane are activated, allowing Ca²⁺ entry into the cell [4,5]. This

mediates refilling of intracellular Ca²⁺ stores, enabling long-term

There are three known isoforms of IP_3R – types 1, 2 and 3 [2,7]. Each has a specific affinity for IP₃, Ca²⁺ dependence, and tissue and subcellular distribution [2.8–13]. Moreover, each type of IP₃R is thought to have a specific role in generation and maintenance of Ca²⁺ oscillations in different cell types [9.14]. Recent investigations suggest that the functional specificity of different IP₃R isoforms also extends to their roles in the activation of store-operated Ca²⁺ currents across the plasma membrane, such as Ca²⁺ release activated Ca²⁺ current (I_{CRAC}). In avian B cells (DT40), which normally express all three types of the receptor, only IP₃R2 and IP₃R3 participate in the activation of I_{CRAC} through IP₃-dependent Ca²⁺ release from the intracellular stores, while IP₃R1 does not [15]. In freshly isolated rat hepatocytes, however, an IP₃R agonist with higher affinity for type 1 receptors has significantly stronger effects on Ca²⁺ release and Ca²⁺ entry than the agonists more selective for type 2 receptors, suggesting that a specialised region of the ER linked to activation of store-operated Ca²⁺ entry is enriched in IP₃R1, despite that IP₃R2 is the predominant isoform [16]. These and a wide range of other experimental results are consistent with a notion of ER Ca²⁺ store heterogeneity [17–22]. Furthermore, some dissociation between release of Ca²⁺ from intracellular stores and activation of CRAC channels on the plasma membrane lead to the hypothesis of a specialised CRAC store

Abbreviations: IP3, inositol 1,4,5-trisphosphate; IP3Rs, inositol 1,4,5-trisphosphate receptors; CRAC, Ca²⁺ release activated Ca²⁺; SOCE, store-operated Ca²⁺ entry; Rn, rattus norvegicus

Corresponding author, Tel.: +61 8 8303 3979; fax: +61 8 8303 3356. E-mail address: Grigori.Rychkov@adelaide.edu.au (G.Y. Rychkov).

specifically linked to activation of I_{CRAC} [15,17]. In contrast, in pancreatic acinar cells ER seem to represent a continuous Ca²⁺ store, and Ca²⁺ diffusion inside ER is virtually unrestricted [23].

In the present study we investigated the role of each type of $\rm IP_3$ receptor in activation of $\rm I_{CRAC}$ in H4IIE rat liver cells. We have found that although all three types of $\rm IP_3$ receptor are expressed in these cells in comparable amounts, only the siRNA-mediated knockdown of $\rm IP_3R1$ and $\rm IP_3R3$, but not $\rm IP_3R2$, results in a significant reduction in the amplitude of the $\rm I_{CRAC}$ activated by intracellular perfusion with $\rm IP_3$. At the same time, agonist-induced $\rm Ca^{2+}$ release from the stores was affected by the knockdown of $\rm IP_3R1$ and $\rm IP_3R2$, but not $\rm IP_3R3$. These results lend further support for the notion of a specialised $\rm Ca^{2+}$ store linked to the activation of store-operated $\rm Ca^{2+}$ channels and suggest that the properties of this $\rm Ca^{2+}$ store are cell type specific.

2. Materials and methods

2.1. Cell culture

H4IIE cells were cultured at 37 °C with 5% CO₂ in Dulbecco's modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 0.1% l-glutamine [24]. For some experiments cells were grown in culture medium supplemented with 100 nM insulin (Sigma) and 100 nM Dexamethasone (Sigma).

2.2. siRNA design

siRNA sequences were designed for IP₃R1, IP₃R2 and IP₃R3 according to published criteria, while control siRNAs, used to evaluate any nonspecific effects of siRNA transfection, had no homology to any known mammalian genes [25]. To aid in the identification of siRNA transfected cells a fluorescently labelled control siRNA was added to all transfections. As longer siRNA has been reported to enhance knockdown and ensure maximal specificity, IP₃R2 and its corresponding control siRNA were extended to 27 base pairs in length compared to 21 base pairs for IP₃R1 and IP₃R3 and their corresponding control (Table 1) [26]. Based on preliminary experiments, all transfections were incubated for 72 and 96 h using 80 nM siRNA. siRNAs were made by Qiagen, Germany.

2.3. Immunofluorescence and western blotting

Immunofluorescence and Western blotting were performed at 72 and 96 h post transfection as previously described [24]. Cells grown on glass coverslips were fixed with cold methanol at $-20\,^{\circ}$ C for 5 min and then blocked for 15 min at room temperature with 20% FBS (v/v) in phosphate buffered saline (PBS). The coverslips were then incubated for 4 h, at room temperature, with the specific anti-IP₃R primary antibody (IP₃R1: polyclonal rabbit diluted 1:200, Affinity Bioreagents; IP₃R2: polyclonal goat diluted 1:200, Santa Cruz; IP₃R3 polyclonal mouse diluted 1:50, BD Biosciences). This was followed with either one-hour incubation with fluorescein isothiocyanate-labelled goat anti-rabbit IgG secondary antibody diluted 1:500 (Abcam) for IP₃R1, or with Texas red-labelled bovine anti-goat IgG secondary antibody diluted 1:400 (Santa Cruz) for IP₃R2 and Cy3 donkey anti-mouse diluted 1:200 (Rockland) for IP₃R3. Coverslips were mounted using a solidifying cell-mounting medium (Prolong gold,

Table 1 siRNA sequences. siRNAs designed for types 1, 2 and 3 IP₃Rs, and their respective controls.

siRNA	Sense sequence
IP₃R1	5'-AGCAGACACGAUAGUGAAAdTdT-3'
IP ₃ R3	5'-CAAGCAGUCUGUAUUUGGUdTdT-3'
IP ₃ R1/3 control	5'-UUCUCCGAACGUGUCACGUdTdT-3'
IP ₃ R2	5'-CCGUAUCUCUUACAUGCUGUCCAUAdTdT-3'
IP ₃ R2 control	5'-UUCUCCGAACGUGUCACGUGAAAUUdTdT-3'

Molecular Probes), supplemented with DAPI (200 nM) to enable cell identification in the absence of IP₃ receptor labelling.

Protein extraction and Western blot techniques were performed as previously published by Su et al. [27]; however, protein samples were quantified using spectrophotometry (ShimadzuGene UV-1601) at 562 nm, with a Bicinchoninic acid protein assay kit (Sigma). For optimal protein separation a 7.5% SDS-page separating gel was used, in conjunction with a 4% SDS-PAGE stacking gel. Identification of IP₃R1, IP₃R2 and IP₃R3 protein utilised anti-IP₃R1 (diluted 1:500, Affinity Bioreagents), anti-IP3R2 (diluted 1:200, Santa Cruz) and anti-IP3R3 (diluted 1:200, BD Biosciences) primary antibodies. The secondary antibodies used included goat anti-rabbit IgG-HRP-conjugate, diluted 1:2000 (Abcam) for IP₃R1, donkey anti-goat IgG-HRP-conjugate, diluted 1:4000 (Santa Cruz) for IP₃R2 and donkey anti-mouse IgG-HRP-conjugate, diluted 1:1000 (Abcam) for IP₃R3. These combinations of primary and secondary antibodies produced western blots with prominent single bands above 240 kDa, corresponding to the predicted molecular weight of IP₃Rs.

As a control, membranes were stripped (100 mM beta-mercaptoethanol, 2% SDS, 62.5 mM Tris–HCl pH 6.8) for 30 minutes at 50 °C, and then re-probed with anti-GAPDH as per the foregoing protocol, using anti-GAPDH diluted 1:500 (rabbit polyclonal IgG, Santa Cruz Biotechnology).

To analyse the western blot, optical density measurements of IP_3Rs bands from control and IP_3Rs knockdown cells were taken using Scion Image software (Scion Corp., USA). These results were normalised to the respective GAPDH measurements, accounting for any loading differences between lanes.

2.4. Electrophysiology

Whole-cell patch clamping of H4IIE cells was performed using a computer-based patch-clamp amplifier and PULSE software (EPC-9, Heka electronics, Germany) as previously described [24]. The bath solution contained (mM): 140 NaCl, 4 CsCl, 10 CaCl₂, 2 MgCl₂, 10 glucose and 10 HEPES; adjusted to pH 7.4 with NaOH. Two different internal pipette solutions were used, depending on whether 20 μM IP $_3$ or 2 μM thapsigargin (Tg), a sarcoplasmic/endoplasmic reticulum Ca²⁺ ATPase (SERCA) inhibitor, was used to promote store depletion. For use with IP₃, the internal pipette solution contained (mM): 120 Cs glutamate, 4 CaCl₂, 5 MgCl₂, 1 MgATP, 10 EGTA and 10 HEPES; adjusted to pH 7.2 with NaOH. For use with Tg the internal pipette solution contained (mM): 125 Cs glutamate, 5 MgCl₂, 10 EGTA, and 10 HEPES; adjusted to pH 7.2 with NaOH. Patch pipettes were pulled from borosilicate glass and firepolished; pipette resistance ranged between 2 and $4 M\Omega$. Series resistance, for which no compensation was made, did not exceed 10 M Ω . In order to monitor the development of I_{SOC} , voltage ramps between -120 and +120 mV were applied every 2 s, starting immediately after achieving the whole-cell configuration. Acquired currents were filtered at 2.7 kHz and sampled at 10 kHz. All averaged data shown on the graphs are presented as a mean \pm SEM. Unpaired t test has been used to compare the data sets obtained under different conditions. All voltages shown are nominal voltages not corrected for the liquid junction potential between the bath and electrode solutions. The holding potential was 0 mV throughout. Cell capacitance was compensated automatically by the EPC9 amplifier.

2.5. Measurements of $[Ca^{2+}]_{cyt}$ using Fura-2

To estimate $[Ca^{2+}]_{cyt}$ H4IIE cells grown on glass coverslips were loaded at room temperature for 30 min with 5 μ M Fura-2 AM in Krebs-Ringer-HEPES buffer (KRH) containing 0.02% (v/v) pluronic acid. The KRH solution contained (mM): NaCl, 136; KCl, 4.7; CaCl₂, 1.3; MgCl₂, 1.25; glucose, 10; and HEPES, 10; adjusted to pH 7.4 with NaOH. After 30 min of de-esterification period, the fluorescence emission of Fura-2 was imaged at 340 and 380 nm by selecting regions of interest (ROI) under 40× objective of a Nikon TE300

epifluorescence microscope in conjunction with a Sutter DG-4/OF wavelength switcher, Omega XF04 filter set for fura-2, Photonic Science ISIS-3 ICCD camera and UIC Metafluor software, as described previously [18,24]. Values of fluorescence ratio were converted to values of [Ca²⁺]_{Cyt} using an *in situ* calibration method and a K_d value of 224 for the Ca²⁺-Fura-2 complex [28]. Paired t test has been used to compare the data obtained from cells used for measurements on the same day.

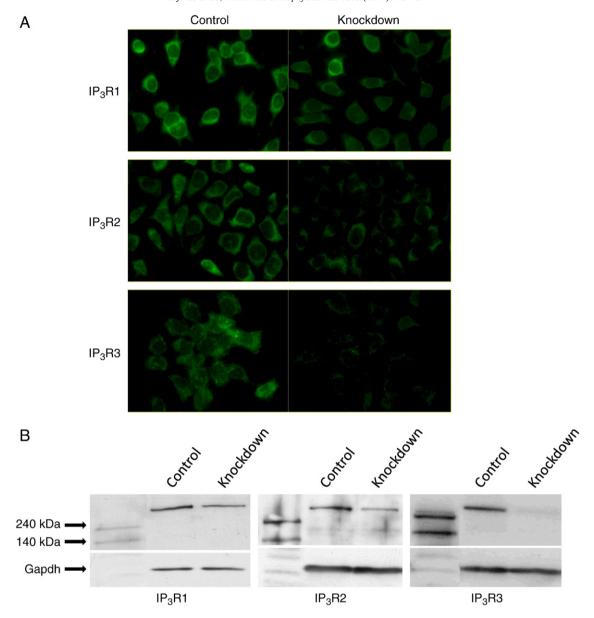
2.6. gRT-PCR

Total RNA was extracted from H4IIE cells using RNeasy Mini kit (Qiagen) according to the manufacturer's instructions. Contaminating DNA was removed from total RNA extraction using TURBO DNA-free™ kit (Ambion) according to the manufacturer's instructions. RNA integrity was electrophoretically verified by ethidium bromide staining showing clear 28S and 18S bands with a ratio of about 2:1 and by OD_{260}/OD_{280} nm absorption ratio >2.0 (measured with Eppendorf BioPhotometer 6131). The same amounts of total RNA (3 µg) from different samples was then reverse transcribed with 200 U SuperScript™ III reverse transcriptase (Invitrogen) using 400 ng of oligo (dT) primers (Qiagen) according to the manufacturer's instructions. The real-time PCRs were run on Rotor-Gene 3000 (Corbett). The amplification efficiency (E) was determined by Rotor-Gene 6.0.19 software and the threshold was set manually above the baseline within the exponential growth region of the amplification curve. The relative expression ratio (R) of a target gene (Rn_Itpr1, Rn_Itpr2, or Rn_Itpr3) was calculated using amplification efficiency (E) and threshold cycle (Ct) of each target gene relative to that of the reference gene (Rn_Gapdh) in the same sample, using the following equation [29].

$$R = \frac{\left(E_{\text{target}}\right)^{C_{\text{target}}}}{\left(E_{\text{ref}}\right)^{C_{\text{tref}}}}$$

3. Results

To ascertain the role of each type of IP₃ receptor in activation of the I_{SOC} in liver cells we used siRNAs to specifically knockdown each isoform of the receptor, immunofluorescence and Western blotting to confirm the effectiveness of the knockdown, and patch clamping and fura-2 Ca²⁺ imaging to investigate the functional consequences. First, the initial immunofluorescence experiments using IP₃R isoform-specific antibodies showed that non-transfected H4IIE cells or cells transfected with a control siRNA, express all three types of the IP₃ receptor (Fig. 1A). Subsequent Western blotting analysis confirmed that all three types of IP₃ receptor are expressed in H4IIE cells in clearly detectable quantities (Fig. 1B). H4IIE cells transfected with siRNA targeted against IP₃R1, IP₃R2 or IP₃R3 showed a substantial decrease in specific immunofluorescence at 72 h post transfection with maximum reduction at 96 h post transfection (Fig. 1A). The reduction in the protein levels of different IP₃Rs in transfected cells was confirmed by Western blotting (Fig. 1B). Densitometry analysis showed 60% to 80% knockdown of each IP₃R at 96 h post transfection. On average, the amounts of IP₃R1, IP₃R2 and IP₃R3 proteins were reduced by $63 \pm 7\%$ (n=4), $60 \pm 4\%$ (n=3), and $79 \pm 4\%$ (n=3), respectively. IP₃R2 was the most difficult to knockdown. Several 21-base pair siRNAs designed against IP₃R2 failed to produce a significant effect, with the knockdown not exceeding 30%. Difficulties in knocking down expression of IP₃R2 have been reported previously by others [14]. Therefore, we used a 27-base pair siRNA against IP₃R2, which allowed levels of knockdown


As we could not achieve a 100% transfection rate and a complete knockdown of IP_3Rs , a negative control siRNA labelled with Alexa Fluor-546 was used in patch clamping experiments to ascertain the

level of transfection with siRNA [24]. In H4IIE cells transfected with a 21base pair negative control siRNA, intracellular perfusion with 20 µM IP₃ activated I_{SOC} with an average maximal amplitude of -3.53 ± 0.40 pA/pF at -100 mV (n = 14) (Fig. 2). The amplitude and the time course of development of I_{SOC} in cells transfected with control siRNA were the same as those in non-transfected cells and cells treated only with the transfection reagent (not shown) [24]. Since the magnitude and time course of development of I_{SOC} recorded from cells transfected with control siRNA for 72 and 96 h were the same, these results were pooled and used as a control for both time points. Only cells containing fluorescently labelled siRNA were used for patch clamping. Transfection with siRNA against IP₃R1 reduced the average maximal amplitude of I_{SOC} measured at -100 mV to $-1.17 \pm 0.30 \text{ pA/pF}$ (n = 13) and $-0.60 \pm 0.19 \text{ pA/pF}$ (n=13) at 72 h and 96 h post transfection, respectively (Fig. 2A). However, when thapsigargin was used to activate I_{SOC}, the average maximal amplitude of the current in cells transfected for 96 h with siRNA targeted against IP₃R1 (-2.43 ± 0.41 pA/pF (n = 9)) was not significantly different from that in cells transfected with control siRNA (-2.42 +0.36 pA/pF (n=9)) (Fig. 2B).

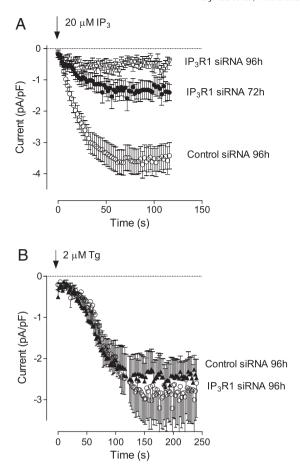
Transfection with siRNA against IP₃R3 also resulted in a reduction of the I_{SOC} amplitude to -2.71 ± 0.45 pA/pF (n=9) and $-1.65 \pm$ 0.3 pA/pF (n=9) at 72 h and 96 h post transfection, respectively, when compared to 21-base pairs control siRNA ($-3.53 \pm 0.40 \text{ pA/pF}$ (n = 14)) (Fig. 3A). However, knockdown of IP₃R3 had a substantially smaller effect on I_{CRAC} amplitude than the knockdown of IP₃R1. Increasing time post transfection to 5 days did not have any additional effect (not shown). As with IP₃R1, the knockdown of IP₃R3 only had an effect on I_{CRAC} amplitude when IP₃ was used to activate the current. When thapsigargin was used to activate I_{SOC}, the average maximal amplitude of the current in cells transfected for 96 h with siRNA targeted against IP₃R3 $(-2.11 \pm 0.19 \text{ pA/pF} (n=11))$ was not significantly different from that in cells transfected with control siRNA $(-2.42 \pm 0.36 \text{ pA/pF} (n=9))$ (Fig. 3B). In contrast, knockdown of IP₃R2 by a specific siRNA had no effect on the I_{CRAC} activated by IP₃ (Fig. 4). Using double transfections 24 h apart did not change the result (not shown).

To ascertain what effect the knockdown of each type of IP₃Rs has on emptying of intracellular Ca2+ stores, we investigated agonistinduced Ca²⁺ release using Fura-2. Physiologically, in hepatocytes IP₃mediated empting of Ca²⁺ stores occurs in response to agonists of Gprotein coupled receptors [30,31]. However, H4IIE liver cells grown in normal cell culture medium do not respond to Ca²⁺ mobilising hormones (authors unpublished). Due to their small size, these cells are not amenable to intracellular injections that we previously used to introduce IP₃ in rat hepatocytes [16], nor did we have much success with membrane permeable IP₃ analogues. However, we found that when cell culture medium is supplemented with 100 nM dexamethasone and 100 nM insulin for several days, H4IIE cells become responsive to extracellular application of the P2Y-receptor agonist ATP (20-100 µM) and exhibit Ca²⁺ release from intracellular stores and Ca²⁺ entry through CRAC channels (Supplemental Fig). Therefore, we used H4IIE cells treated with dexamethasone and insulin to determine whether the knockdown of IP₃Rs resulted in a reduction of Ca²⁺ release from the intracellular stores. Specific knockdown of IP₃Rs using corresponding siRNAs resulted in a significant reduction of the amount of Ca²⁺released by 50 μM ATP in cells treated with siRNA against IP₃R1 and IP₃R2 (p<0.02, n=6, paired t test) but not IP₃R3 (Fig. 5). Knockdown of IP₃R1 caused about 60% reduction in the peak of Ca²⁺ release, while knockdown of IP₃R2 reduced it by about 30% (Fig. 5B).

The foregoing results obtained using Western blotting and immunofluorescence indicate that all three isoforms of IP₃ receptor are present in H4IIE cells. However, they could not give definitive information about the relative expression levels of these receptors. To estimate relative abundance of each isoform of the IP₃ receptor we used quantitative real-time PCR. In H4IIE cells grown in normal DMEM, relative to the housekeeping gene GAPDH, mRNAs for IP₃R2

Fig. 1. Assessment of siRNA-mediated knockdown of each type of IP₃ R in H4lIE cells. A. Immunofluorescence microscopy of types 1, 2 and 3 IP₃Rs (green) in cells transfected for 96 h with negative control siRNAs (first column) and corresponding IP₃Rs siRNAs (second column). Results are representative of 4 individual experiments. B. Reduction of the types 1, 2 and 3 IP₃R proteins as determined by Western blotting. Expression of GAPDH served as a loading control. Molecular weight markers are indicated on the left. Results are representative of 4 individual experiments.

and IP₃R3 were present in equal quantities, while IP₃R1 mRNA was significantly less abundant (Fig. 6). In these cells IP₃R1 mRNA amounted to about $16\pm0.5\%$ (n=4) of the total IP₃Rs message, while IP₃R2 and IP₃R3 accounted for $42\pm1\%$ (n=4) and $42\pm1.4\%$ (n=4) correspondingly. Supplementation of the DMEM with dexamethasone and insulin had little effect on the mRNA levels of IP₃R2 and IP₃R3 relative to GAPDH. However, these agents increased the amount of IP₃R1 mRNA by a factor of 2 (Fig. 6). In cells treated with dexamethasone and insulin, IP₃R1 mRNA amounted for about $29\pm1\%$ (n=4) of the total IP₃Rs message, while IP₃R2 and IP₃R3 accounted for $32\pm0.9\%$ (n=4) and $39\pm1.4\%$ (n=4) correspondingly.


4. Discussion

In this work we show that types 1, 2 and 3 isoforms of IP₃R do not contribute equally to activation of endogenous CRAC channels present in H4IIE liver cells. SiRNA-mediated knockdown of the least abundant IP₃R, type 1, resulted in attenuation of P2Y-receptor mediated Ca^{2+}

release by approximately 60% and a virtually complete suppression of IP₃-mediated activation of I_{CRAC}. Knockdown of IP₃R2 reduced receptor mediated Ca²⁺ release by approximately 35%, but had no effect on the activation of I_{CRAC}. Knockdown of IP₃R3 had no observable effect on Ca²⁺ release at all, but resulted in a significant, but not complete reduction (~60%, 96 h post transfection) of I_{CRAC} amplitude activated by IP₃.

IP₃ receptors expressed on the membranes of intracellular Ca²⁺ stores provide the major pathway for Ca²⁺ release into the cytoplasmic space and play an integral part in physiological activation of store-operated Ca²⁺ channels [2,3]. Specific roles of different types of IP₃ receptor in generation and maintenance of cytoplasmic Ca²⁺ oscillations have been investigated in different cell types in some detail [2,10,14,32,33]. By contrast, the role of each isoform of IP₃ receptor in activation of SOCE is much less well understood.

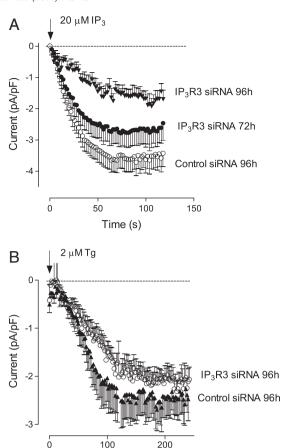

In hepatocytes, Ca²⁺ oscillations and Ca²⁺ waves generated in response to IP₃ regulate glucose metabolism, bile acid transport and bile secretion, protein synthesis, propulsion of bile along the

Fig. 2. Effect of IP₃R1 knockdown on I_{CRAC} in H4IIE cells. A. Development of I_{CRAC} in response to intracellular IP₃ in H4IIE cells treated with either control siRNA (n = 14) or IP₃R1 siRNA for 72 and 96 h (n = 13 for each condition). Unpaired t test showed significant difference between control group and 72 and 96 h treatments (p<0.0001). B. Activation of I_{CRAC} by intracellular application of thapsigargin in H4IIE cells treated with either control siRNA (n = 9) or IP₃R1 siRNA for 96 h (n = 9). Each point represents the amplitude of I_{CRAC} at -100 mV taken from voltage ramps from -120 to 120 mV, applied every 2 seconds.

canaliculus, and many other functions [34]. Primary hepatocytes express two types of IP₃ receptors, IP₃R1 and IP₃R2, with IP₃R2 being the predominant isoform, In situ, IP₃R2 are mainly expressed at the canalicular membrane, while IP₃R1 are expressed elsewhere [33]. It is thought that IP₃R2 are required for the initiation of Ca²⁺ oscillations, since in hepatocytes the hormone-induced Ca²⁺ wave starts at the bile canaliculus and propagates to the basolateral region [33]. However, it has been suggested that the activation of SOCE by IP₃ in primary hepatocytes depends mainly on IP₃R1 [16]. Results of the present investigation show that in H4IIE liver cells IP₃R1 are indispensible for the activation of I_{CRAC}. Taken together these results suggest that the locations of the initial Ca²⁺ release and subsequent store-operated Ca²⁺ entry are spatially separated. It is interesting to note, that in polarised pancreatic acinar cells Ca²⁺ waves also start at the apical pole, where most of the IP3 receptors are expressed, and propagate to basolateral region [35]. However, translocation of stromal interaction molecule 1 (STIM1), the endoplasmic Ca²⁺ sensor that interacts with Orai1, a pore-forming subunit of the CRAC channel on the plasma membrane, occurs at the basolateral region distant from the point of Ca²⁺ wave origination [35,36]. It has been suggested that such spatial separation of Ca²⁺ release and Ca²⁺ entry may contribute to the vectorial transport of Ca²⁺ in secretory epithelia

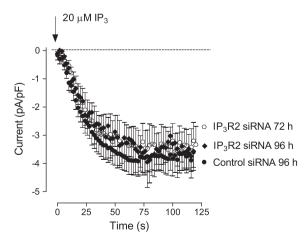

The present results also confirm that IP_3Rs are not directly involved in the activation of I_{CRAC} . Thus before the discovery of STIM1 and Orai1, the molecular components of CRAC channels, IP_3

Fig. 3. Effect of IP₃R3 knockdown on I_{CRAC} in H4IIE cells. A. Development of I_{CRAC} in response to intracellular IP₃ in H4IIE cells treated with either control siRNA (n = 14) or IP₃R3 siRNA for 72 and 96 h (n = 9 for each condition). Unpaired t test showed significant difference between control group and 96 h treatment (p = 0.003). B. Activation of I_{CRAC} by intracellular application of thapsigargin in H4IIE cells treated with either control siRNA (n = 11) or IP₃R3 siRNA for 96 h (n = 9).

Time (s)

receptors were investigated as a potential direct link between Ca^{2+} stores and store-operated channels [37,38]. Later it became apparent that IP₃ receptors are likely not directly involved in the steps required for activation of I_{CRAC} following ER Ca^{2+} depletion. Thus, triple IP₃ receptor knockout DT40 chicken B-cells developed normal I_{CRAC} when

Fig. 4. Knockdown of IP₃R2 has no effect on the development of I_{CRAC} . Development of I_{CRAC} in response to intracellular IP₃ in H4IIE cells treated with either control siRNA (n = 10) or IP₃R2 siRNA for 72 and 96 h (n = 6). Each point represents the amplitude of I_{CRAC} at -100 mV taken from voltage ramps from -120 to 120 mV, applied every 2 s.

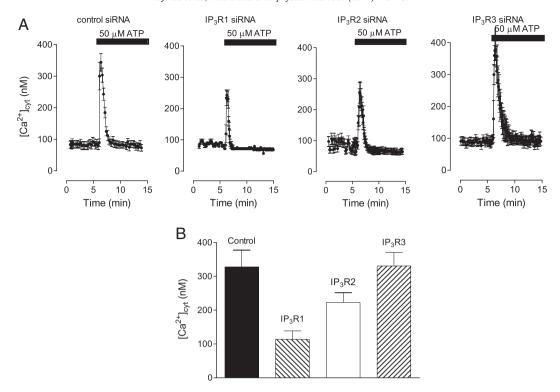
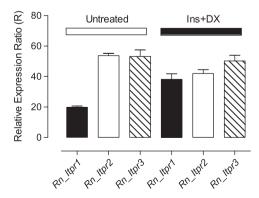



Fig. 5. Effect of the knockdown of different isoforms of IP $_3$ receptor on ATP-mediated Ca $^{2+}$ release. A. Ca $^{2+}$ release from intracellular stores initiated by application of 50 μ M ATP to the bath in the absence of extracellular Ca $^{2+}$ in H4IIE cells treated with either control siRNA, or siRNAs against different isoforms of IP $_3$ Rs. H4IIE cells were grown in the cell culture medium supplemented with 100 nM dexamethasone and 100 nM insulin. Each trace represents averaged data \pm SEM from 20 to 30 cells on the same coverslip. B. Peak Ca $^{2+}$ release in H4IIE cells treated with control siRNA, or siRNAs against different isoforms of IP $_3$ Rs. Data was averaged from three separate experiments. Paired t test confirmed significance of the reduction of Ca $^{2+}$ release in cells treated with siRNA against IP $_3$ R1 and IP $_3$ R2 (p<0.02; n=3-6), but not IP $_3$ R3.

stores were depleted by the inhibitors of SERCA pump [39]. Consistent with these studies, knockdown of any isoform of IP_3 receptor in H4IIE cells had no effect on the I_{CRAC} activation by thapsigargin.

Recent investigations of double IP₃ receptor knockout DT40 cell lines, each expressing only one type of IP₃ receptor, showed that cells possessing IP₃R3 alone developed normal I_{CRAC}. Cells expressing only IP₃R2 showed reduced I_{CRAC} amplitude, while cells expressing only IP₃R1 did not develop any I_{CRAC} in response to intracellular IP₃ [15]. It was concluded that the putative CRAC store in DT40 cells specifically expresses IP₃R3 and excludes IP₃R1, while IP₃R2 is partially expressed in that store. In H4IIE cells the results are opposite, it is the type 1 IP₃Rs that are fully accountable for the development of I_{CRAC}, and

Fig. 6. Relative expression levels of each type of IP₃ receptor in H4IIE cells as determined by quantitative RT-PCR. Expression of types 1, 2 and 3 IP₃Rs relative to the expression of housekeeping gene (GAPDH) in H4IIE cells grown in the absence and presence of 100 nM dexamethasone and 100 nM insulin. Expression of IP₃R1 in dexamethasone and insulin treated cells was significantly weaker than expression of IP₃R1 in untreated cells (unpaired t test, n=4, p=0.003) and expression of any other type of IP₃R (n=4, p<0.0001).

presence of both IP₃R2 and IP₃R3 is insufficient for the development of a significant current in response to IP₃. Knockdown of IP₃R3, however, did decrease the amplitude of I_{CRAC}. This suggests that IP₃R3 contributes to the activation of I_{CRAC} only when co-expressed with IP₃R1. Alternatively, knockdown of one isoform of the receptor changes the composition of heterotetramers formed by the remaining two IP₃R isoforms and leading to a change in their intracellular localization [40,41]. It is possible that, in the absence of IP₃R3, there is a higher probability of IP₃R1 and IP₃R2 forming heterotetramers but these are excluded from the putative CRAC store. The notion that I_{CRAC} dependence on IP₃R3 in H4IIE cells might be indirect is supported by the fact that the receptor-mediated Ca²⁺ release was unaffected by IP₃R3 knockdown. Interestingly, a complete lack of the effect of IP₃R3 knockdown on peak Ca²⁺ release shown here has been previously reported in HeLa cells and Cos-7 cells where IP₃R3 is the predominant isoform [14]. One possible explanation is that, of the three isoforms, IP₃R3 has the lowest affinity to IP₃ and might not be activated by the amounts of IP₃ produced by the receptor stimulation in these particular cell types, and might have a specific role involving activation in certain circumstances [14,42,43]. In patch clamp experiments, however, where saturating concentrations of IP₃ are used, IP3R3 still can contribute to depletion of CRAC store and development of I_{CRAC}.

There are also other possible factors to be considered in comparing the effects of $\rm IP_3Rs$ knockdown on receptor-activated $\rm Ca^{2+}$ release and the amplitude of $\rm I_{CRAC}$. In intact cells, receptor-mediated $\rm Ca^{2+}$ release will depend not only on the amount of $\rm IP_3$ released but also on the spatial separation between a given subtype of $\rm IP_3$ receptors and the G-protein coupled receptors on the plasma membrane. In patch clamping this effect is also likely negated by using a saturating dose of $\rm IP_3$. Nevertheless, a significant reduction of the receptor-mediated $\rm Ca^{2+}$ release by the knockdown of $\rm IP_3R1$ or $\rm IP_3R2$, and a complete lack of the effect on the $\rm I_{CRAC}$ of the knockdown of $\rm IP_3R2$ with virtually complete inhibition of $\rm I_{CRAC}$ by

the knockdown of IP₃R1 supports the notion of some dissociation between store release and activation of store-operated channels, and confirms that for any given cell type, one or more types of IP₃ receptor plays a specific role in activation of SOCE [15,16,44]. It seems, however, that the role that each type of IP₃ receptor plays in SOCE is not ascribed to the receptor type per se but depends on the cell type and probably the spatial location and specific properties of the ER.

In conclusion, we show here that in liver cells, among all three isoforms of IP₃Rs, the least abundant type 1 IP₃R has the biggest role in agonist-induced Ca²⁺ release and is indispensible for activation of I_{CRAC}. These results provide further evidence of heterogeneity of intracellular Ca²⁺ stores and specificity of each IP₃R isoform function.

Supplementary data to this article can be found online at doi: 10.1016/j.bbamem.2010.12.013.

Acknowledgements

This work was supported by the Australian Research Council and NHMRC of Australia. GYR is supported by NHMRC Senior Research Fellowship.

References

- [1] M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling, Nat. Rev. Mol. Cell Biol. 4 (2003) 517-529.
- [2] J.K. Foskett, C. White, K.H. Cheung, D.O.D. Mak, Inositol trisphosphate receptor Ca² release channels, Physiol. Rev. 87 (2007) 593-658.
- M.J. Berridge, Inositol trisphosphate and calcium signaling, Nature 361 (1993) 315-325
- [4] J.W. Putney, Capacitative calcium entry revisited, Cell Calcium 11 (1990) 611-624.
- [5] J.W. Putney, Capacitative calcium entry: sensing the calcium stores, J. Cell Biol. 169 (2005) 381–382.
- R.B. Gregory, D. Sykiotis, G.J. Barritt, Evidence that store-operated Ca²⁺ channels are more effective than intracellular messenger-activated non-selective cation channels in refilling rat hepatocyte intracellular Ca2+ stores, Cell Calcium 34 (2003) 241-251.
- I. Bezprozvanny, The inositol 1, 4, 5-trisphosphate receptors, Cell Calcium 38 (2005)
- A. Futatsugi, T. Nakamura, M.K. Yamada, E. Ebisui, K. Nakamura, K. Uchida, T. Kitaguchi, H. Takahashi-Iwanaga, T. Noda, J. Aruga, K. Mikoshiba, IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism, Science 309 (2005) 2232-2234.
- C.C.P. Mendes, D.A. Gomes, M. Thompson, N.C. Souto, T.S. Goes, A.M. Goes, M.A. Rodrigues, M.V. Gomez, M.H. Nathanson, M.F. Leite, The type III inositol 1, 4, 5-trisphosphate receptor preferentially transmits apoptotic Ca²⁺ signals into mitochondria, J. Biol. Chem. 280 (2005) 40892-40900.
- [10] M.H. Nathanson, M.B. Fallon, P.J. Padfield, A.R. Maranto, Localization of the type 3 inositol 1, 4, 5-trisphosphate receptor in the Ca²⁺ wave trigger zone of pancreatic acinar cells, J. Biol. Chem. 269 (1994) 4693-4696.
- H. Zhou, T. Nakamura, N. Matsumoto, C. Hisatsune, A. Mizutani, T. Iesaki, H. Daida, K. Mikoshiba, Predominant role of type 1 IP3 receptor in aortic vascular muscle contraction, Biochem. Biophys. Res. Commun. 369 (2008) 213-219.
- [12] D.O.D. Mak, S. McBride, A.J. Foskett, Regulation by Ca²⁺ and inositol 1, 4, 5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels: Ca²⁺ activation uniquely distinguishes types 1 and 3 InsP3 receptors, J. Gen. Physiol. 117 (2001) 435–446.
- C.W. Taylor, P.C.A. da Fonseca, E.P. Morris, IP3 receptors: the search for structure, Trends Biochem. Sci. 29 (2004) 210-219.
- M. Hattori, A.Z. Suzuki, T. Higo, H. Miyauchi, T. Michikawa, T. Nakamura, T. Inoue, K. Mikoshiba, Distinct roles of inositol 1, 4, 5-trisphosphate receptor types 1 and 3 in Ca²⁺ signaling, J. Biol. Chem. 279 (2004) 11967-11975.
- C. Peinelt, A. Beck, M.K. Monteilh-Zoller, R. Penner, A. Fleig, IP3 receptor subtypedependent activation of store-operated calcium entry through I_{CRAC}, Cell Calcium 45 (2009) 326-330.
- R.B. Gregory, R. Hughes, A.M. Riley, B.V.L. Potter, R.A. Wilcox, G.J. Barritt, Inositol trisphosphate analogues selective for types I and II inositol trisphosphate receptors exert differential effects on vasopressin-stimulated Ca²⁺ release from intracellular stores in rat hepatocytes, Biochem. J. 381 (2004) 519-526.
- [17] H. Turner, A. Fleig, A. Stokes, J.P. Kinet, R. Penner, Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity, Biochem. J. 371 (2003) 341-350.

- [18] J. Castro, E.C. Aromataris, G.Y. Rychkov, G.J. Barritt, A small component of the endoplasmic reticulum is required for store-operated Ca²⁺ channel activation in liver cells: evidence from studies using TRPV1 and taurodeoxycholic acid, Biochem, J. 418 (2009) 553-566.
- [19] M.R. Blaustein, V.A. Golovina, Structural complexity and functional diversity of endoplasmic reticulum Ca²⁺ stores. Trends Neurosci, 24 (2001) 602–608.
- V.A. Golovina, M.P. Blaustein, Spatially and functionally distinct Ca² sarcoplasmic and endoplasmic reticulum, Science 275 (1997) 1643–1648. J. Meldolesi, T. Pozzan, The heterogeneity of ER Ca²⁺ stores has a key role in
- nonmuscle cell signaling and function, J. Cell Biol. 142 (1998) 1395–1398.
- [22] L. Orci, M. Ravazzola, M. Le Coadic, W.W. Shen, N. Demaurex, P. Cosson, STIM1-induced precortical and cortical subdomains of the endoplasmic reticulum, Proc. Natl Acad. Sci. USA 106 (2009) 19358-19362
- [23] M.K. Park, O.H. Petersen, A.V. Tepikin, The endoplasmic reticulum as one continuous Ca²⁺ pool: visualization of rapid Ca²⁺ movements and equilibration, EMBO J. 19 (2000) 5729-5739.
- T. Litjens, T. Nguyen, J. Castro, E.C. Aromataris, L. Jones, G.J. Barritt, G.Y. Rychkov, Phospholipase C-gamma1 is required for the activation of store-operated Ca² channels in liver cells, Biochem. J. 405 (2007) 269-276.
- A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A. Khvorova, Rational siRNA design for RNA interference, Nat. Biotechnol. 22 (2004) 326-330.
- S.D. Rose, D.H. Kim, M. Amarzguioui, J.D. Heidel, M.A. Collingwood, M.E. Davis, J.J. Rossi, M.A. Behlke, Functional polarity is introduced by Dicer processing of short substrate RNAs, Nucleic Acids Res. 33 (2005) 4140-4156.
- X. Su, D.J. Mancuso, P.E. Bickel, C.M. Jenkins, R.W. Gross, Small interfering RNA knockdown of calcium-independent phospholipases A2 beta or gamma inhibits the hormone-induced differentiation of 3T3-L1 preadipocytes, J. Biol. Chem. 279 (2004) 21740-21748
- G. Grynkiewicz, M. Poenie, R.Y. Tsien, A new generation of Ca²⁺ indicators with greatly improved fluorescence properties, J. Biol. Chem. 260 (1985) 3440-3450.
- M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res. 29 (2001) 6.
- L.D. Gaspers, A.P. Thomas, Calcium signaling in liver, Cell Calcium 38 (2005) 329-342.
- N.M. Woods, K.S.R. Cuthbertson, Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes, Nature 319 (1986) 600-602.
- E. Hernandez, M.F. Leite, M.T. Guerra, E.A. Kruglov, O. Bruna-Romero, M.A. Rodrigues, D.A. Gomes, F.J. Giordano, J.A. Dranoff, M.H. Nathanson, The spatial distribution of inositol 1, 4, 5-trisphosphate receptor isoforms shapes Ca²⁺ waves, J. Biol. Chem. 282 (2007) 10057-10067.
- K. Hirata, T. Pusl, A.F. O'Neill, J.A. Dranoff, M.H. Nathanson, The type II inositol 1, 4, 5-trisphosphate receptor can trigger Ca²⁺ waves in rat hepatocytes, Gastroenterology 122 (2002) 1088-1100.
- G.J. Barritt, J.L. Chen, G.Y. Rychkov, Ca²⁺-permeable channels in the hepatocyte plasma membrane and their roles in hepatocyte physiology, Biochim. Biophys. Acta Mo. Cell Res. 1783 (2008) 651-672.
- G. Lur, L.P. Haynes, I.A. Prior, O.V. Gerasimenko, S. Feske, O.H. Petersen, R.D. Burgoyne, A.V. Tepikin, Ribosome-free terminals of rough ER allow formation of STIM1 puncta and segregation of STIM1 from IP3 receptors, Curr. Biol. 19 (2009) 1648-1653
- M.D. Cahalan, STIMulating store-operated Ca²⁺ entry, Nat. Cell Biol. 11 (2009) 669-677.
- K. Kiselyov, X. Xu, G. Mozhayeva, T. Kuo, I. Pessah, G. Mignery, X. Zhu, L. Birnbaumer, S. Muallem, Functional interaction between InsP₃ receptors and store-operated Htrp3 channels, Nature 396 (1998) 478-482.
- H.T. Ma, R.L. Patterson, D.B. van Rossum, L. Birnbaumer, K. Mikoshiba, D.L. Gill, Requirement of the inositol trisphosphate receptor for activation of store-operated + channels, Science 287 (2000) 1647–1651.
- [39] H. Sugawara, M. Kurosaki, M. Takata, T. Kurosaki, Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1, 4, 5-trisphosphate receptors in signal transduction through the B-cell antigen receptor, EMBO J. 16 (1997)
- [40] H. Onoue, H. Tanaka, K. Tanaka, N. Doira, Y. Ito, Heterooligomer of type 1 and type 2 inositol 1, 4, 5-trisphosphate receptor expressed in rat liver membrane fraction exists as tetrameric complex, Biochem. Biophys. Res. Commun. 267 (2000)
- [41] S.K. Joseph, C. Lin, S. Pierson, A.P. Thomas, A.R. Maranto, Heteroligomers of type-I and type-III inositol trisphosphate receptors in WB rat liver epithelial cells, J. Biol. Chem. 270 (1995) 23310-23316.
- C.L. Newton, G.A. Mignery, T.C. Sudhof, Coexpression in vertebrate tissues and cell-lines of multiple inositol 1, 4, 5-trisphosphate (Insp3) receptors with distinct affinities for insp(3), J. Biol. Chem. 269 (1994) 28613-28619.
- H.P. Tu, Z.N. Wang, E. Nosyreva, H. De Smedt, I. Bezprozvanny, Functional characterization of mammalian inositol 1, 4, 5-trisphosphate receptor isoforms, Biophys. J. 88 (2005) 1046-1055.
- Y.P. Wang, J. Chen, Y. Wang, C.W. Taylor, Y. Hirata, H. Hagiwara, K. Mikoshiba, T. Toyo-oka, M. Omata, Y. Sakaki, Crucial role of type 1, but not type 3, inositol 1, 4, 5-trisphosphate (IP3) receptors in IP3-induced Ca²⁺ release, capacitative Ca²⁺ entry, and proliferation of A7r5 vascular smooth muscle cells, Circ. Res. 88 (2001) 202-209.